

Fertilizer N Management – More than Just Rate – For Improved Crop Yields and Water Quality

Clifford S. Snyder, PhD, CCA

Nitrogen Program Director (North America and Global) International Plant Nutrition Institute Conway, Arkansas, USA 72034

Fluid Fertilizer Technology ConferenceLouisville, KYDec. 8-9, 2015

Nitrogen Recovery Efficiency by Major Cereals

- Nitrogen use efficiency ... "rarely exceeds 70% often ranges from 30-60%"
- "conversion of N inputs to products for arable crops can be 60-70% or even more" (Kitchen and Goulding, 2001)

Our Premise or Position More in the Crop = Less in the Environment

- Improved crop yields, and greater crop nutrient recovery and soil retention, should result in less risk of nutrient loss to water and air resources
- Without detailed tracking of fertilizer N BMP implementation within watersheds, there is no definitive way of identifying the cause of water quality changes
- Increased water quality monitoring and modeling will reflect whether agriculture is improving, or not
- The larger the watershed, and the larger the waterbody, the greater the potential lag time in seeing water quality improvements
- Agronomically appropriate N rates are a fundamental part of the 4Rs

N Management and Balanced Nutrition

- P and K soil fertility levels are below optimum and need improved (IPNI, 2010)
 - 2010 median soil P=25 ppm: a 6 ppm decline since 2005;
 approximately 42% of samples <20 ppm agronomic optimum
 - 2010 median soil K =150 ppm: a 4 ppm decline since 2005; approximately 34% of samples <120 ppm agronomic optimum

Optimum P and K enhance crop N recovery

Snyder & Fixen. 2012. J. Soil Water Conserv.

Nutrient Uptake, Partitioning, and Remobilization in Modern, Transgenic Insect-Protected Maize Hybrids

Bender et al. 2013. Agron. J. 105:161–170

New Era Corn Hybrids Yield More per Unit of N applied, In Association with Increased Plant Population

Ciampitti & Vyn. 2012. Field Crops Research 133: 48–67 Ciampitti and Vyn. 2011. Field Crops Research 121: 2–18

Probable Sources of Impairments in Assessed Rivers and Streams (top ten)

*NPS estimate includes those sources shaded in blue

(Source: Draft CWA 305(b) National Water Quality Inventory: http://www.epa.gov/waters/ir/)

Source: Dr. Ellen Gilinsky, EPA. Presented at Nutrient Management and Edge of Field Monitoring Conference. Memphis, TN. Dec. 2, 2015

Keys to Success

Developed Jan 15, 2015

- To achieve a 45 percent reduction in N and P, HTF must engage with and seek reductions from all source sectors: *partnerships and collaboration are key to strong progress.*
- Each HTF state developed a nutrient reduction strategy with stakeholder participation.
- Strategies are the key road map and cornerstone for reaching the HTF goal.
- Focus is now on implementation on the ground in state priority watersheds.
- Federal HTF Members have a unified strategy to guide technical and financial assistance to states and continued science support.

Source: Dr. Ellen Gilinsky, EPA. Presented at Nutrient Management and Edge of Field Monitoring Conference. Memphis, TN. Dec. 2, 2015

Shifts in N Source Consumption – May Reflect Management "Opportunities"

Data source: H. Vroomen, TFI and AAPFCO

Data source: H. Vroomen, TFI and AAPFCO

Data source: H. Vroomen, TFI and AAPFCO

Fig. 3. General seasonal patterns for precipitation, N uptake rate by a corn crop, cropping system water use, and periods potentially favorable for NO₃ leaching from midwestern corn production (adapted from Fig. 4 of Power et al., 1998).

Dinnes et al. 2002. Agron. J.

" Fertilizer N management, particularly rate and time of application, plays a dominant role in the loss of nitrate to surface waters."

Source: Randall, G.W. 1997. Nitrate-N in surface waters as influenced by climatic conditions and agricultural practices. In Proc. Agric. and Hypoxia in the Mississippi Watershed Conf., St. Louis, MO. 14–15 July 1997. Am. Farm Bureau Federation, Park Ridge, IL. (and cited by Dinnes et al. 2002. Agron. J. 94:153–171)

N Rate and Time Affect Corn Yield and Nitrate Drainage Loss (MN)

Table 6-1. Effect of N rate and time of application on nitrate-N losses to subsurface drainage and
corn yield in Minnesota (adapted from Randall and Mulla, 2001).

$N^{[a]}$		Annual Loss of	Five-Year Yield Average		
Rate		Nitrate-N in Drainage	Yield	Net Return	
$(lb ac^{-1})$	Time	$(lb N ac^{-1} year^{-1})$	(bu ac^{-1})	$(\$ ac^{-1})$	
0	0	7	66		
120	Fall	27	131	100	
120	Spring	19	150	135	
180	Fall	34	160	143	
180	Spring	26	168	154	

^[a] Ammonium sulfate applied to continuous corn about 1 November or 1 May.

<u>Compared to fall application of N:</u> Higher corn grain yield with spring applic. and lower nitrate loss

Randall and Sawyer. 2008. Pp. 73-85 in UMRSHNC (Upper Mississippi River Subbasin Hypoxia Nutrient Committee). 2008. Final Report: Gulf Hypoxia and Local Water Quality Concerns Workshop. St. Joseph, Michigan: ASABE.

N Rate, Time, and Nitrification Inhibitor Affect Corn Yield and Nitrate Drainage Concentration (IA)

Table 6-4. Average annual flow-weighted NO₃-N concentration in subsurface drainage from a corn-soybean rotation in Iowa as affected by time of N application, N-Serve, and N rate (2000-2003) (adapted from Lawlor et al., 2004).

	Nitrogen Treatment				
	Rate		Flow-Weighted		
Time	$(lb N ac^{-1})$	N-Serve	NO_3 -N (mg L ⁻¹)		
Fall	150	No	14.2		
Fall	150	Yes	16.2		
Fall	225	No	18.1		
Spring	150	No	15.4		
Spring	150	Yes	17.7		
Spring	225	No	24.4		
		LSD (0.05):	3.0		

- Higher N rate in spring had highest nitrate concentration
- At 150 lbs of N/A: no advantage to spring application, and no signif. effect of nitrif. inhibitor on nitrate drainage concentration

Randall and Sawyer. 2008. Pp. 73-85 in UMRSHNC (Upper Mississippi River Subbasin Hypoxia Nutrient Committee). 2008. Final Report: Gulf Hypoxia and Local Water Quality Concerns Workshop. St. Joseph, Michigan: ASABE.

N Time and Nitrification Inhibitor Affect Corn Yield and Nitrate Drainage Concentration (MN)

Table 6-5. Corn production and nitrate loss as affected by time of anhydrous application and
N-Serve at Waseca, 1987-1993 (adapted from Randall et al., 2003a, 2003b).

			Seven-Year Aver	Flow-Weighted	
Nitrogen		Corn	Ν	Economic	NO ₃ -N Concentration
Treatment		Yield	Recovery ^[a]	Return to N ^[b]	in Tile Drainage ^[c]
Time	N-Serve	$(bu ac^{-1})$	(%)	$(\$ ac^{-1})$	$(mg L^{-1})$
Fall	No	131	31	34	16.8
Fall	Yes	139	37	43	13.7
Spring	No	139	40	47	13.7
Split	No	145	44	56	14.6
LSD (0.10):		4			

^[a] N recovery = (N content in grain - N content in grain from 0 lb check) / fertilizer N rate.

^[b] Based on corn = 2.00 bu^{-1} , fall N = 0.25 lb^{-1} , spring N = 0.275 lb^{-1} , N-Serve = 7.50 ac^{-1} , and application cost = 4.00 ac^{-1} time⁻¹.

^[c] Across the four-cycle corn (1990-1993) - soybean (1991-1994) rotation.

- 150 lbs N/A as anhydrous in all treatments
- Only modest reductions in nitrate concentration in drainage with nitrification inhibitor use in the fall
- Best yield with spring split applic.,... with modest nitrate conc. reduction

Randall and Sawyer. 2008. Pp. 73-85 in UMRSHNC (Upper Mississippi River Sub-basin Hypoxia Nutrient Committee). 2008. Final Report: Gulf Hypoxia and Local Water Quality Concerns Workshop. St. Joseph, Michigan: ASABE.

Corn Response to Late-Spring Nitrogen Management in the Walnut Creek Watershed (IA)

*50 as spring preplant; other as sidedress. 200 considered "non-limiting)

Karlen et al. 2005. Agron. J. 97:1054-1061

Corn Response to Late-Spring Nitrogen Management in the Walnut Creek Watershed (IA)

- "…… Watershed-scale implementation of the LSNT can reduce nitrate loss through drainage water, it may also increase producer risk, especially when above-normal rainfall occurs shortly after the sidedress N fertilizer is applied"
- "To encourage adoption of the LSNT program for its water quality benefits, we suggest that federal, state, or private agencies develop affordable risk insurance to help producers minimize the potential crop risk associated with this program"

Karlen et al. 2005. Agron. J. 97:1054-1061

Iowa Nutrient Science Assessment - 2012 Nitrogen Reduction Scenarios

		Nitrate-N Reduction
	Practice/Scenario	% (from baseline)
	Baseline	
	Cover crops (rye) on ALL CS and CC acres	28
jement	Reducing nitrogen application rate from background to the MRTN 133 lb N/ac on CB and to 190 lb N/ac on CC (in MLRAs where rates are higher than this)	9
Ina	Cover crops (rye) on all no-till acres	6
Ma	Sidedress all spring applied N	4
rogen	Using a nitrification inhibitor with all fall applied fertilizer	1
Nit	Moving fall anhydrous fertilizer application to spring preplant	0.1

Target Load Reduction from NPS for Hypoxia Goal ~41% Source: M Helmers, Iowa State U.

Iowa Nutrient Science Assessment - 2012 Nitrogen Reduction Practices

	Practice	% Nitrate-N Reduction [Average (Std. Dev.)]	
	Timing (Fall to spring)	6 (25)	
Nitrogen	Source (Liquid swine compared to commercial)	4 (11)	
Wanagement	Nitrogen Application Rate	Depends on starting point	>
	Nitrification Inhibitor	9 (19)	
	Cover Crops (Rye)	31 (29)	
Nitrogen ManagementTiming (Fall to spring)6 (2) Source (Liquid swine compared to commercial)Nitrogen 	Perennial – Land retirement	85 (9)	
	41 (16)		
	Extended Rotations	42 (12)	
	Drainage Water Mgmt.	33 (32)*	
Edge-of-Field	Shallow Drainage	32 (15)*	
	Wetlands	52	
	Bioreactors	43 (21)	
	Buffers	91 (20)**	

*Load reduction not concentration reduction

**Concentration reduction of that water interacts with active zone below the buffer

Source: M Helmers, Iowa State U.

Iowa Nutrient Science Assessment - 2012

Combined Nitrogen Reduction Scenarios - EXAMPLES

			Nitrate-N Reduction	Phosphorus Reduction
	Scenario	Practice/Scenario	% (from baseline)	% (from baseline)
	BS	Baseline		
	NCS1	Combined Scenario (MRTN Rate, 60% Acreage with Cover Crop, 27% of ag land treated with wetland and 60% of drained land has bioreactor)	42	30
Combination Scenarios	NCS4	Combined Scenario (MRTN Rate, Inhibitor with all Fall Commercial N, Sidedress All Spring N, 85% of all tile drained acres treated with bioreactor, 85% of all applicable land has controlled drainage, 38.25% of ag land treated with a wetland)	42	0
	NCS7	Combined Scenario (MRTN Rate, Inhibitor with all Fall Commercial N, Sidedress All Spring N, 70% of all tile drained acres treated with bioreactor, 70% of all applicable land has controlled drainage, 31.5% of ag land treated with a wetland, and 70% of all agricultural streams have a buffer)	42	20

Target Load Reduction from NPS for Hypoxia Goal ~41% Source: M Helmers, Iowa State U.

A Nonpoint Source Nitrogen Reduction Plan for Minnesota Surface Waters

Dave Mulla. 2014. ASA-CSSA-SSSA meetings. Long Beach, CA https://scisoc.confex.com/scisoc/2014am/videogateway.cgi/id/22143?recordingid=22143

A Nonpoint Source Nitrogen Reduction Plan for Minnesota Surface Waters

Suitable Acres for BMPs

- Fertilizer rate reductions are only possible in areas where existing application rates exceed University recommendations
- Controlled drainage and bioreactors can be installed on tile drained land with slopes of 0.5%, 1% or 2%
- Perennial grass can be planted on ag land with crop productivity ratings of 60% or less (marginal land)
- Riparian buffers can be installed on ag land within 30 m of waterways
- Wetlands can be restored on tile drained land with hydric soils and high Compound Topographic Index values

A Nonpoint Source Nitrogen Reduction Plan for Minnesota Surface Waters.

A Nonpoint Source Nitrogen Reduction Plan for Minnesota Surface Waters.

A Nonpoint Source Nitrogen Reduction Plan for Minnesota Surface Waters

Milestone			Ni	itro	oge
		Sou	rce		
Baseline Load (1980–1996) Units = 1,000 metric tons (MT) per year	o 54 Agricultural	o 👼 Wastewater	A Miscellaneous	o 16 Total	
Personmended Strategy Reductions		-4		-	
Increasing Fertilizer Use Efficiencies on 11.2 Million Acres Recommended fertilizer rates Placement and timing of application Nitrification inhibitors	11				
Increase and Target Living Cover on 1.6 Million Acres Cover crops Perennial buffers Forage and biomass planting Perennial energy crops Conservation easements and land retirement	4.0				
Drainage Water Retention and Treatment for 0.6 Million Acres Constructed wetlands Controlled drainage Bioreactors Two stage ditches	1.3				
Wastewater Treatment		1.9			
Total Reductions	16.3	1.9	0 -	+ 0	Total 18.2
lestone Target 20% om Baseline Load = 200 Metric Tons Reduced	nal ons DO		Mi 18, Reduc	leston 200 ed = 2	ie MT 20%

Science Assessment to Support an Illinois Nutrient Loss Reduction Strategy

	Practice/Scenario	Nitrate- N reduction per acre (%)	Nitrate- N reduced (million Ib N)	Nitrate-N Reduction % (from baseline)	Cost (\$/lb N removed)
	Baseline		410		
pla	Reducing N rate from background to the MRTN (10% of acres)	10	2.3	0.6	-4.25
	Nitrification inhibitor with all fall applied fertilizer on tile-drained corn acres	10	4.3	1.0	2.33
In-fie	Split (50%) fall and spring (50%) on tile-drained corn acres	7.5 to 10	13	3.1	6.22
	Fall to spring on tile-drained corn acres	15 to 20	26	6.4	3.17
	Cover crops on all corn/soybean tile-drained acres	30	84	20.5	3.21
	Cover crops on all corn/soybean non-tiled acres	30	33	7.9	11.02
-	Bioreactors on 50% of tile-drained land	40	56	13.6	1.38
pla	Wetlands on 25% of tile-drained land	40	28	6.8	5.06
fie	Buffers on all applicable crop land (reduction only for water that interacts with active area)	90	36	8.7	1.63

Mark David. 2014. ASA-CSSA-SSSA meetings. Long Beach, CA https://scisoc.confex.com/scisoc/2014am/videogateway.cgi/id/20740?recordingid=20740

Science Assessment to Support an Illinois Nutrient Loss Reduction Strategy

	Practice/Scenario	Nitrate- N reduction per acre (%)	Nitrate- N reduced (million Ib N)	Nitrate-N Reduction % (from baseline)	Cost (\$/lb N removed)
	Baseline		410		
d use nge	Perennial/energy crops equal to pasture/hay acreage from 1987	90	10	2.6	9.34
Lan cha	Perennial/energy crops on 10% of tile-drained land	90	25	6.1	3.18
nt Irce	Point source reduction to 10 mg nitrate-N/L		14	3.4	3.30
Poi	Point source reduction in N due to biological nutrient removal for P		8	1.8	

Mark David. 2014. ASA-CSSA-SSSA meetings. Long Beach, CA https://scisoc.confex.com/scisoc/2014am/videogateway.cgi/id/20740?recordingid=20740

Name	Combined Practices and/or Scenarios	Nitrate-N (% reduction)	Total P (% reduction)	Cost of Reduction (\$/lb)	Annualized Costs (million \$/year)
NP1	MRTN, fall to spring, bioreactors 50%, wetlands 25%, no P fert. on 12.5 million ac above STP maintenance, reduced till on 1.8 million ac conv. till eroding > T, buffers on all applicable lands, point source to 1.0 mg TP/L and 10 mg nitrate-N/L	35	45	**	383
NP2	MRTN, fall to spring, bioreactors 50%, no P fert. on 12.5 million ac above STP maintenance, reduced till on 1.8 million ac conv. till eroding > T, cover crops on all CS, point source to 1.0 mg TP/L and 10 mg nitrate-N/L	45	45	**	810
NP3	MRTN, fall to spring, bioreactors 15%, no P fert. on 12.5 million ac above STP maintenance, reduced till on 1.8 million ac conv. till eroding > T, cover crops on 87.5% of CS, buffers on all applicable lands, perennial crops on 1.6 million ac >T, and 0.9 million additional ac.	45	45	**	791
NP4	MRTN, fall to spring N, bioreactors 35%, no P fert. on 12.5 million ac above STP maintenance, reduced till on 1.8 million ac conv. till eroding > T, buffers on 80% of all applicable land	20	20	**	48
NP5	MRTN, fall to spring N, bioreactors 30%, wetlands 15%, no P fert. on 12.5 million ac above STP maintenance, reduced till on 1.8 million ac conv. till eroding > T, point source to 1.0 mg TP/L and 10 mg nitrate-N/L on 45% of discharge	20	20	**	66
NP6	MRTN, fall to spring N, no P fert. on 12.5 million ac above STP maintenance, reduced till on 1.8 million ac conv. till eroding > T, cover crops on 1.6 million ac eroding >T and 40% of all other CS	24	20	**	244

Mark David. 2014. ASA-CSSA-SSSA meetings. Long Beach, CA

https://scisoc.confex.com/scisoc/2014am/videogateway.cgi/id/20740?recordingid=20740

Mark David's Conclusions for Illinois

- no simple solution, or one method to achieve goals
- will take a range of point and non point source reductions to meet targets
- initial focus could be:
 - point source P reductions (\$114 million per year)
 - tile-drained nitrate reductions by agriculture (range of costs)
- strategy will get us started

Mark David. 2014. ASA-CSSA-SSSA meetings. Long Beach, CA https://scisoc.confex.com/scisoc/2014am/videogateway.cgi/id/20740?recordingid=20740

Variability in Drainage, Nitrate Concentration and Nitrate Loss – Weather a Major Driver

Corn-Soybean Rotation 150/160 lb-N/acre Application Rate

IOWA STATE UNIVERSITY

Corn Yield and Nitrate Loss in Subsurface Drainage Affected by Timing of Anhydrous Ammonia Application

Table 3. Flow-weighted annual nitrate concentration in tile drainage for each treatment for 2010–2013 and averaged for all 4 yr.

Treatment+	2010-corn	2011-soybean	2012-corn	2013-soybean	Avg.
			-mg N L ⁻¹ ——		
FH	24.2a‡	35.4a	32.4a	21.1a	28.3a
F	10.7b	9.0b	16.0b	11.6c	11.8b
РР	6.9c	6.0b	10.7c	11.4c	8.8d
SD	6.8c	7.6b	11.9c	13.8b	10.0c
Avg.	10.7A	12.5A	16.1A	14.1A	

+ Treatments are FH- very high N rate applied in fall, F- fall-applied N, PP- N applied preplant, and SD- N applied as sidedress.

[‡] Numbers within a column followed by the same lowercase letter and numbers within a row followed by the same uppercase letter are not significantly different ($P \le 0.05$).

Dan Jaynes. USDA ARS. Iowa. 2015. Soil Sci. Soc. Am. J. 79:1131–1141 Wipni

Table 4. Annual nitrate load in tile drains by treatment for 2010–2013 and averaged for the 4 yr.

Treatment+	2010-corn	2011-soybean	2012-corn	2013-soybean	Avg.
			kg N ha ⁻¹ ——		
FH	80.9a‡	73.8a	9.8a	38.2a	50.7a
F	37.7b	15.8b	3.1b	17.1c	18.4b
РР	27.6b	12.8b	2.6b	19.6c	15.7b
SD	28.1b	19.4b	5.4ab	25.2b	19.5b
Avg.	39.3A	26.8AB	5.0C	24.6B	

+ Treatments are FH– very high N rate applied in fall, F– fall-applied N, PP– N applied preplant, and SD– N applied as sidedress.

‡ Numbers within a column followed by the same lowercase letter and numbers within a row followed by the same uppercase letter are not significantly different ($P \le 0.05$).

F and PP yields (~234 bu/A) not significantly different, but lower than FH and SD yields (>260 bu/A)

Dan Jaynes. USDA ARS. Iowa. 2015. Soil Sci. Soc. Am. J. 79:1131–1141

Impacts of 4R Nitrogen Management on Crop Production and Nitrate-Nitrogen Loss in Tile Drainage

Treatment	Tillage	Nitrogen Application	Nitrogen
Number		Time	Application Rate
			(lb N/acre)*
		Fall (Anhydrous	
1	Conventional tillage**	Ammonia with	135
		nitrapyrin)	
2		Spring <mark>(</mark> Anhydrous	125
۷۲	Conventional tillage	Ammonia)	135
		Split with variable N at	
		sidedress (40 lb/acre of	Yearly variable
3	Conventional tillage	UAN at planting plus in-	based on in-
		season adjusted rate no	season adjusted
		later than mid-	rate
		vegetative growth stage)	
4	Conventional tillage	None	0

Table 1. Treatments at the Northwest Iowa Tile Drain Water Quality Study Site.

* For corn plots only. The 135 lb N/acre rate is based on the Corn Nitrogen Rate Calculator output for corn following soybean in Iowa at a 0.10 price ratio

(<u>http://extension.agron.iastate.edu/soilfertility/nrate.aspx</u>).

** Fall chisel corn stalks with spring disk/field cultivate, and spring disk/field cultivate soybean stubble.

IPNI-2014-USA-4RN16. http://research.ipni.net/page/RNAP-6408

Experimental Watershed Treatments

12 watersheds:

Iowa State U., M. Helmers. Edge of Field Conf. Dec. 2015

Total Nitrogen Loss in Runoff (2007-2011)

Zhou et al., 2014

Iowa State U., M. Helmers. Edge of Field Conf. Dec. 2015

Nitrate-N Loss in Runoff (2007-2011)

Zhou et al., 2014

Iowa State U., M. Helmers. Edge of Field Conf. Dec. 2015

Summary

- In Iowa, on average the majority of drainage and nitrate-N loss occurs in April-June
- Timing of nitrogen application (fall or early season sidedress) had little impact on nitrate-N concentrations in drainage
- In north-central lowa, winter cereal rye cover crops reduced nitrate-N concentration in subsurface drainage by ~25%
- Strategically sited prairie strips hold potential for reducing surface runoff and loss of sediment and nutrients with surface runoff

IOWA STATE UNIVERSITY

Full COSUST paper available online at:

http://www.sciencedirect.com/science/article/pii/S1877343514000384

OPEN ACCESS

Available online at www.sciencedrect.com ScienceDirect

(Constant

Agriculture: sustainable crop and animal production to help mitigate nitrous oxide emissions CS Snyder¹, EA Davidson², P Smith³ and RT Venterea⁴

Nervou costice (%,C) emissions from apticulture can be tackled by educing domain for, and commergine or, heights (%) inputs via diet modification and waste eduction, and/or through technologies applied at the field level. Here we toose on the latter options. Opponativities the mitigating N₂O eminimizes at the field level can be advanced by a cleaner solentific understanding of the system complexities leading to eminimize, while maintaining agricultural system sustainability and productivity. A sarge of technologies are anailable to

reduce emissions, but rather than focus specifically on emissions, the broader management and policy focus should be on improved N use efficiency and effectiveness; for lower N₂O emissions per unit of orop and ammai product, or per unit of land area.

International Plant Rutrition Institute, P.O. Box 10508, Conway, AR

72504, USA ⁹ Woods Hole Research Center, 149 Woods Hole Road, Falmouth, MA 10540 Hold, USA

³ Institute of Biological and Environmental Sciences, University of Absetsen, 33 St Macher Devs, Aberdoon, AB24 3(3), UK ⁶ USDA-APE, Soil and Water Management Research Unit, 3L Paul, WH 55 109, USA.

Conseponding author: Snyder, CS (conyclor@toni.nut)

Current Opinion in Environmental Bustainability 2014, 5-10:45-54 The write correct from attrement issue on System dynamics and subdetability – NCGST Editor by Oceone Knoses, Wim de Wrise and Sybil Setzinger

Received 27 Fataruary 2014; Accepted 14,July 2014

1877-34254 - and front marter, (; 2014 The Authors, Published by Element IVV. This is an open access article under the DC IVFAX SA is ensure (Ftp Jonn silver commons, organizemently are autod). Http://dx.doi.org/10.1096/j.comput.2954.07.006

Introduction

An estimated 50% more food must be produced by 2650 to meet the needs of nine billion people [12]. Lifest demand can be reduced through measures such as det modification or water reduction, there will be increasing pressure to use once N input: potentially increasing N₂O emissions. Using consumption-based measures could reduce pressures on, or modesure growth in, demands

Current Opinion in Environmental Sustainability 2014, 9-10:45-54

for increased N inputs and thereby future N₄O emissions. The impacts measures have been described recently $[3-5]_b$ so in this article we focus on options to reduce N₂O emissions from agriculture at the field scale.

Increased food production in the past has been made possible, in large part, by the production and me of commercial festilizer N 161. A modeling effort has shown the majority of the past increases in atmospheric NgO could be arributed to fertilizer and manore N inesan 171. Yet, it is clear that global emissions of emeryboxee eases (GHGs) associated with hard clearing for extensive agriculture would be far wone if not for the investments in, and adoption of, modern cropping and fertilization technologies. Further, investments in improving error yields per unit of existing land area, or sustainable agricultural intensification, should be 'prominent among efforts to reduce future GHG emissions' [8]. Such sustainable intensification integrations could lead to increased cronping system productivity and can belo protect the remaining natural systems from further agricultural encroachment, Improved intensification of management practices (not nocessarily greater inputs) may result in more efficient water and feitilizer N use [5,9].

Major cereal grains account for the majority of the global demand for nitrogen (N) inputs from fertilizers and manures. Wheat (Triticam annitum 1.,) accounts for the largest global convemption of all fertilizer N, followed by maize (Zea many L.), and then rice (Orma sation L.); 18, 17 and 15%, respectively for the most recently reported calendar year of 2010 [10]. Ures is the dominant femiliaer N source consumed globally, representing 56.5% of featilizer N consumption in calendar year 2011. Other fesrifizer N may be the primary sources in some countries and regions. For example, anhydrous ammonia accounted for 27%, uses ammonium nitrate solutions for 27%, and area for 22% of the femiliaer N comuned in the U.S. in calendar year 2011. In some major com-producing U.S. states, anhydrous ammonia and urna each account for 45% of the femilizer N consumption [11]. Whereas, ammonium nitrate and calcium nitrate accounted for 27-49% and uses accounted for 5-29% of the femilizer N comumption in France, Germany, Poland, Spain and the United Kingdom in 2011 (IFA Statistics, International Femilizer Industry Association, Paris, France, 2014, http:// www.fertifact.on/ifa/HomePare/STATISTICS). Such yearly global statistics are valuable and assembled from

wate acianoscienci com

Recent Examples of N Management Changes on N₂O Emission Reduction (1 of 4)

Comparison technology or N practice	Reference technology or fertilizer N practice	Emission reduction (%)	Comment [COSUST paper reference]
Urea with urease inhibitor (UI)	Urea alone	Nil	
Nitrification inhibitor (NI) or polymer coated urea (PCU)	Conventional N, no inhibitor or polymer coating	35-38	Meta analysis; 35 studies [36] ¹
Urea	Anhydrous ammonia	50	15-yrold corn- soybean system [33] ²
Change in time, source, place	Standard or reference N management	20-80	Summary of >20 studies [37] ¹
Urea ammonium nitrate (UAN) with NI	UAN with no inhibitor	19-67	Side-dressed UAN, subsurface colter- applied at V4-V6 [41] ²

¹ range of agricultural crops ² corn (maize)

Recent Examples of N Management Changes on N₂O Emission Reduction (2 of 4)

Comparison technology or N practice	Reference technology or fertilizer N practice	Emission reduction (%)	Comment [COSUST paper reference]
Fertilizer N with UI and NI	Fertilizer N with no inhibitor	38	Meta analysis; 3 studies, 20 observations [42] ²
Fertilizer placement >5cm deep	Fertilizer placement <5 cm deep	>30	Meta analysis; reduced tillage [26] ³
Urea with NI	Urea with no inhibitor	81-100	Full growing season measurements (217–382 days); fertilizer banded >5 cm
Polymer sulfur coated urea (PSCU)	Urea with no coating	-35 to -46	deep, 20 cm from plant row; clay loam soil . PSCU emissions lower than urea, first 20 days after application [43] ⁴

² corn (maize) ³ range of agricultural crops, excluding rice

⁴ sugarcane, residue removed or burned

Recent Examples of N Management Changes on N₂O Emission Reduction (3 of 4)

Comparison technology or N practice	Reference technology or fertilizer N practice	Emission reduction (%)	Comment [COSUST paper reference]
Fertilizer N (including urea with UI and NI, urea–ammonium nitrate (UAN) with UI and NI, urea, UAN, ammonium nitrate, or PCU)	Poultry litter	46-81	Humid region; surface broadcast, not incorporated [39] ²
Commercial fertilizer	Manure	40	Meta analysis; 9 studies, 73 observations [42] ²
Calcium ammonium nitrate	Manure (poultry, or liquid swine, or liquid dairy)	54	Surface applied N, incorporated by tillage, day of application [40] ²

² corn (maize)

Recent Examples of N Management Changes on N₂O Emission Reduction (4 of 4)

Comparison technology or N practice	Reference technology or fertilizer N practice	Emission reduction (%)	Comment [COSUST paper reference]	
	UAN with no inhibitor	41		
	Urea with no inhibitor	61	Full growing season N ₂ O measurements; irrigated: no-till and	
UAN with methylene	UAN	28	tilled; surface banded	
urea & urea triazone	Urea	57	N near emerged corn	
PCU	UAN	14	row [35] ²	
PCU	Urea	42		
Urea with UI and NI	Urea with no inhibitor	37	Dairy cows excluded 2 months prior; plant N recovery: 50 to 85% [38] ⁵	

² corn (maize)

⁵ using perennial ryegrass (*Lolium perenne* L.)/white clover (*Trifolium repens* L.) pasture

N₂O Emissions vs. N Use Efficiency

- Cropping system NUE (*i.e. apparent N recovery*)
 - improvements at modest fertilizer N rates correlated strongly with reduced yield-scaled N₂O emissions (from meta analyses of 19 studies, 147 observations; van Groenigen et al., 2010)

Figure 2. Meta-analysis results of the relationship between N use efficiency and yield-scaled N₂O emissions. NUE is expressed as apparent recovery efficiency (in %) of applied N.

Van Groenigen, J.W., G.L. Velthof, O. Oenema, K.J. Van Groenigen, and C. Van Kessel. 2010. European Journal of Soil Science 61:903-913.van Groenigen et al. 2011. Better Crops 95(2):16-17.

Invited Scientists Who Participated in IPNI-TFI-CFI March Nitrogen (N) Management Workshop

N Agronomists

- Peter Scharf U of MO
- Dave Franzen ND State U
- Jim Camberato Purdue U
- Dave Mengel KS State U
- Carrie Laboski– U of WI
- Cameron Pittelkow U of IL
- Trent Roberts U of AR

N₂O Scientists

- Rick Engel Montana State U.
- Rod Venterea MN, USDA-ARS
- Tony Vyn- Purdue U
- Jerry Hatfield IA, USDA-ARS
- Tim Parkin IA, USDA ARS
- Keith Paustian/ Steve Ogle CO State U.
- Steve Del Grosso CO, USDA ARS
- Adam Chambers OR, USDA NRCS
- Marlen Eve DC, USDA Ofc. Chief Econ.

Canadian Scientists

- Claudia Wagner-Riddle U of Guelph
- Mario Tenuta, U of MB
- David Burton, Dalhousie U (formerly Nova Scotia Ag. College
- Miles Dyck, U of Alberta

Scientific Advisory Group member

DRAFT- 7 Corn, Soybean, Wheat Regional 3-Tiered 4R-N Management Frameworks

- Irrigated corn-soybean South
- Irrigated corn-soybean North
- Non-irrigated corn-soybean west
- Non-irrigated corn-soybean east
- Non-irrigated corn-soybean N. central upper Midwest (between east, west, and northern)
- Wheat northern Great Plains
- Wheat southern Great Plains
- Reviewed and modified in science breakouts; presented to March 2015 Workshop invited N scientists using a live "blind" voting process.
- FRAMEWORKS (with basic, intermediate, and advanced N management for improved crop N recovery (i.e. NUE)) <u>UNANIMOUSLY</u> APPROVED

- Below Basic BMPs (best management practices)
 25% of the growers
- Basic
 - practices adopted by approximately 50%
- Intermediate
 - practices adopted by approximately 20%
- Advanced
 - practices adopted by approximately 5%

Performance Level	Right Source	Right Rate	Right Time	Right Place
Basic	 Guaranteed or book value for all sources applied Urea, UAN, Anhydrous Ammonia, Manure 	 Rate based on evidence recognized by regional soil fertility extension Properly accounting for legume & Manure N 	 Spring; not on frozen soil Apply manure according to a manure management plan 	 Broadcast and incorporated, injected or subsurface band If broadcasted Urea accompanied by an inhibitor UAN w/herbicide no more than 40 Lbs
Intermediate	 Guaranteed or known analysis for all sources applied; with nitrification inhibitor or controlled release if preplant; with urease inhibitor for urea/UAN surface applied sidedress 	 Rate based on evidence recognized by regional soil fertility extension, including results of local adaptive management research. Manure analysis required to determine rate 	 Some or all applied nitrogen in season or if pre-plant used with NI or polymer- coated 	 Broadcast and incorporated, injected or subsurface band, surface application allowed only for sidedress urea with UI or dribbled UAN
Advanced	 Guaranteed or known analysis; with nitrification inhibitor or controlled release if preplant; with urease inhibitor for urea/UAN sidedress 	 Rate based on evidence recognized by regional soil fertility extension, or results of local adaptive management research, AND, in addition, addressing within-field and weather-specific variability using tools such as crop sensors, PSNT, models that allow adjustment of in-season N rates 	 Some or all N applied in-season 	 Broadcast and incorporated, injected or subsurface band, surface application allowed only for sidedress urea with UI or dribbled UAN

N₂O Red. %

?

?

?

PNI

Performance Level	Right Source
Basic	 Guaranteed or book value for all sources applied Urea, UAN, Anhydrous Ammonia, Manure
Intermediate	 Guaranteed or known analysis for all sources applied; with nitrification inhibitor or controlled release if preplant; with urease inhibitor for urea/UAN surface applied sidedress
Advanced	 Guaranteed or known analysis; with nitrification inhibitor or controlled release if preplant; with urease inhibitor for urea/UAN sidedress

Performance Level	Right Rate
Basic	 Rate based on evidence recognized by regional soil fertility extension
	 Properly accounting for legume & Manure N
Intermediate	 Rate based on evidence recognized by regional soil fertility extension, including results of local adaptive management research. Manure analysis required to determine rate
Advanced	 Rate based on evidence recognized by regional soil fertility extension, or results of local adaptive management research, AND, in addition, addressing within-field and weather-specific variability using tools such as crop sensors, PSNT, models that allow adjustment of in-season N rates

Performance Level	Right Time
Basic	 Spring; not on frozen soil Apply manure according to a manure management plan
Intermediate	 Some or all applied nitrogen in season or if pre-plant used with NI or polymer-coated
Advanced	Some or all N applied in-season

Performance Level	Right Place
Basic	 Broadcast and incorporated, injected or subsurface band If broadcasted Urea accompanied by an inhibitor UAN w/herbicide no more than 40 Lbs Broadcast and incorporated, injected
Intermediate	or subsurface band, surface application allowed only for sidedress urea with UI or dribbled UAN
Advanced	 Broadcast and incorporated, injected or subsurface band, surface application allowed only for sidedress urea with UI or dribbled UAN

We Can Improve N Use Efficiency and Effectiveness

by implementing nutrient BMPs ...

Right source @ Right rate, Right time, and Right place

In conjunction with other proven conservation practices

4R Nutrient Stewardship

QUESTIONS?

Better Crops, Better Environment ... through Science

www.ipni.net

IPNI 4R Research Projects and Reports http://research.ipni.net/toc/category/4r research fund

